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Online Matching with Queueing Dynamics

Subhashini Krishnasamy1, Rajat Sen1, Ramesh Johari2, and Sanjay Shakkottai1

1The University of Texas at Austin
2Stanford University

Abstract

We consider a variant of the multiarmed bandit problem where jobs queue for service, and
service rates of different servers may be unknown. We study algorithms that minimize queue-
regret: the (expected) difference between the queue-lengths obtained by the algorithm, and those
obtained by a “genie”-aided matching algorithm that knows exact service rates. A naive view
of this problem would suggest that queue-regret should grow logarithmically: since queue-regret
cannot be larger than classical regret, results for the standard MAB problem give algorithms
that ensure queue-regret increases no more than logarithmically in time. Our paper shows
surprisingly more complex behavior. In particular, the naive intuition is correct as long as the
bandit algorithm’s queues have relatively long regenerative cycles: in this case queue-regret is
similar to cumulative regret, and scales (essentially) logarithmically. However, we show that this
“early stage” of the queueing bandit eventually gives way to a “late stage”, where the optimal
queue-regret scaling is O(1/t). We demonstrate an algorithm that (order-wise) achieves this
asymptotic queue-regret, and also exhibits close to optimal switching time from the early stage
to the late stage.

1 Introduction

Stochastic multi-armed bandits (MAB) have a rich history in sequential decision making [1, 2, 3].
In its simplest form, a collection of K arms are present, each having a binary reward (Bernoulli
random variable over {0, 1}) with an unknown success probability1 (and different across arms). At
each (discrete) time, a single arm is chosen by the bandit algorithm, and a (binary-valued) reward is
accrued. The MAB problem is to determine which arm to choose at each time in order to minimize
the cumulative expected regret, namely, the cumulative loss of reward when compared to a genie
that has knowledge of the arm success probabilities.

In this paper, we consider the variant of this problem motivated by queueing applications.
Formally, suppose that arms are pulled upon arrivals of jobs; each arm is now a server that can
serve the arriving job. In this model, the stochastic reward described above is equivalent to service.
In other words, if the arm (server) that is chosen results in positive reward, the job is successfully
completed and departs the system. However, this basic model fails to capture an essential feature
of service in many settings: in a queueing system, jobs wait until they complete service. Such
systems are stateful: when the chosen arm results in zero reward, the job being served remains
in the queue, and over time the model must track the remaining jobs waiting to be served. The
difference between the cumulative number of arrivals and departures, or the queue length, is the
most common measure of the quality of the service strategy being employed.

1Here, the success probability of an arm is the probability that the reward equals ’1’.
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Queueing is employed in modeling a vast range of service systems, including supply and demand
in online platforms (e.g., Uber, Lyft, Airbnb, Upwork, etc.); order flow in financial markets (e.g.,
limit order books); packet flow in communication networks; and supply chains. In transportation
systems, applications include matching passengers to cars (e.g. Uber, Lyft), or goods from shippers
to carrier trucks in a freight matching system. In all of these systems, queueing is an essential part
of the model: e.g., in online platforms, the available supply (e.g. available drivers in Uber or Lyft,
or available rentals in Airbnb) queues until it is “served” by arriving demand (ride requests in Uber
or Lyft, booking requests in Airbnb). Since MAB models are a natural way to capture learning in
this entire range of systems, incorporating queueing behavior into the MAB model is an essential
challenge.

This problem clearly has the explore-exploit tradeoff inherent in the standard MAB problem:
since the success probabilities across different servers are unknown, there is a tradeoff between
learning (exploring) the different servers and (exploiting) the most promising server from past
observations. We refer to this problem as the queueing bandit. Since the queue length is simply
the difference between the cumulative number arrivals and departures (cumulative actual reward;
here reward equals job service), the natural notion of regret here is to compare the expected queue
length under a bandit algorithm with the corresponding one under a genie policy (with identical
arrivals) that however always chooses the arm with the highest expected reward.

Formally, let Q(t) be the queue length at time t under a given bandit algorithm, and let Q∗(t) be
the corresponding queue length under the “genie” policy that always schedules the optimal server
(i.e. always plays the arm with the highest mean). We define the queue-regret as the difference in
expected queue lengths for the two policies. That is, the regret is given by:

Ψ(t) := E [Q(t)−Q∗(t)] . (1)

Here Ψ(t) has the interpretation of the traditional MAB regret with caveat that rewards are accu-
mulated only if there is a job that can benefit from this reward. We refer to Ψ(t) as the queue-regret ;
formally, our goal is to develop bandit algorithms that minimize the queue-regret.

To develop some intuition, we compare this to the standard stochastic MAB problem. For the
standard problem, well-known algorithms such as UCB, KL-UCB, and Thompson sampling achieve
a cumulative regret of O((K − 1) log t) at time t [4, 5, 6], and this result is essentially tight: there
exists a lower bound of Ω((K−1) log t) over all policies in a reasonable class, so-called α-consistent
policies [7]. In the queueing bandit, we can obtain a simple bound on the queue-regret by noting
that it cannot be any higher than the traditional regret (where a reward is accrued at each time
whether a job is present or not). This leads to an upper bound of O((K − 1) log t) for the queue
regret.

However, this upper bound does not tell the whole story for the queueing bandit: we show
that there are two “stages” to the queueing bandit. In the early stage, the bandit algorithm is
unable to even stabilize the queue – effectively, the expected success probability (expectation taken
over both the arm Bernoulli random variables and the arm selection by the bandit algorithm) is
smaller than the arrival probability of a job. Thus, on average, the queue length increases over
time and is continuously backlogged (because the arrival rate exceeds the expected service rate),
leading to an “unstable” growth of the queue; therefore the queue-regret grows with time, similar
to the cumulative regret. Once the algorithm is able to stabilize the queue—the late stage—then
a dramatic shift occurs in the behavior of the queue regret. A stochastically stable queue goes
through regenerative cycles – a random cyclical behavior where queues build-up over time, then
empty, and the cycle repeats. The associated recurring“zero-queue-length” epochs means that
sample-path queue-regret essentially “resets” at (stochastically) regular intervals; i.e., the sample-
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path queue-regret becomes zero or below zero at these time instants. Thus the queue-regret should
fall over time, as the algorithm learns.

Our main results provide lower bounds on queue-regret for both the early and late stages, as
well as algorithms that essentially match these lower bounds. We first describe the late stage, and
then describe the early stage for a heavily loaded system.

1. The late stage. We first consider what happens to the queue regret as t → ∞. As noted
above, a reasonable intuition for this regime comes from considering a standard bandit algorithm,
but where the sample-path queue-regret “resets” at time points of regeneration.2 In this case, the
queue-regret is approximately a (discrete) derivative of the cumulative regret. Since the optimal
cumulative regret scales like log t, asymptotically the optimal queue-regret should scale like 1/t.
Indeed, we show that the queue-regret for α-consistent policies is at least C/t infinitely often,
where C is a constant independent of t. Further, we introduce an algorithm called Q-ThS for the
queueing bandit (a variant of Thompson sampling with explicit structured exploration), and show
an asymptotic regret upper bound of O (poly(log t)/t) for Q-ThS, thus matching the lower bound
up to poly-logarithmic factors in t. Q-ThS exploits structured exploration: we exploit the fact that
the queue regenerates regularly to explore more systematically and aggressively.

2. The early stage. The preceding discussion might suggest that an algorithm that explores
aggressively would dominate any algorithm that balances exploration and exploitation. However,
this intuition would be incorrect, because an overly aggressive exploration policy will preclude the
queueing system from ever stabilizing, which is necessary to induce the regenerative cycles that
lead the system to the late stage. As a simple example, it is well known that if the only goal
is to identify the best out of two servers as fast as possible, the optimal algorithm is a balanced
randomized experiment (with half the trials on one server, and half on the other) [8]. But such
an algorithm has positive probability of failing to stabilize the queue, and so the queue-regret will
grow over time.

To even enter the late stage, therefore, we need an algorithm that exploits enough to actually
stabilize the queue (i.e. choose good arms sufficiently often so that the mean service rate exceeds the
expected arrival rate). We refer to the early stage of the system, as noted above, as the period before
the algorithm has learned to stabilize the queues. For a heavily loaded system, where the arrival
rate approaches the service rate of the optimal server, we show a lower bound of Ω(log t/ log log t)
on the queue-regret in the early stage. Thus up to a log log t factor, the early stage regret behaves
similarly to the cumulative regret (which scales like log t). The heavily loaded regime is a natural
asymptotic regime in which to study queueing systems, and has been extensively employed in the
literature; see, e.g., [9, 10] for surveys.

Perhaps more importantly, our analysis shows that the time to switch from the early stage to
the late stage scales at least as t = Ω(K/ε), where ε is the gap between the arrival rate and the
service rate of the optimal server; thus ε → 0 in the heavy-load setting. In particular, we show
that the early stage lower bound of Ω(log t/ log log t) is valid up to t = O(K/ε); on the other hand,
we also show that, in the heavy-load limit, depending on the relative scaling between K and ε, the
regret of Q-ThS scales like O

(
poly(log t)/ε2t

)
for times that are arbitrarily close to Ω(K/ε). In

other words, Q-ThS is nearly optimal in the time it takes to “switch” from the early stage to the
late stage.

Our results constitute the first insight into the behavior of regret in this queueing setting; as
emphasized, it is quite different than that seen for minimization of cumulative regret in the standard
MAB problem. The preceding discussion highlights why minimization of queue-regret presents a

2This is inexact since the optimal queueing system and bandit queueing system may not regenerate at the same
time point; but the intuition holds.
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subtle learning problem. On one hand, if the queue has been stabilized, the presence of regenerative
cycles allows us to establish that queue regret must eventually decay to zero at rate 1/t under an
optimal algorithm (the late stage). On the other hand, to actually have regenerative cycles in the
first place, a learning algorithm needs to exploit enough to actually stabilize the queue (the early
stage). Our analysis not only characterizes regret in both regimes, but also essentially exactly
characterizes the transition point between the two regimes. In this way the queueing bandit is a
remarkable new example of the tradeoff between exploration and exploitation.

2 Related work

MAB algorithms. Stochastic MAB models have been widely used in the past as a paradigm
for various sequential decision making problems in industrial manufacturing, communication net-
works, clinical trials, online advertising and webpage optimization, and other domains requiring
resource allocation and scheduling; see, e.g., [1, 2, 3]. The MAB problem has been studied in
two variants, based on different notions of optimality. One considers mean accumulated loss of
rewards, often called regret, as compared to a genie policy that always chooses the best arm. Most
effort in this direction is focused on getting the best regret bounds possible at any finite time in
addition to designing computationally feasible algorithms [3]. The other line of research models the
bandit problem as a Markov decision process (MDP), with the goal of optimizing infinite horizon
discounted or average reward. The aim is to characterize the structure of the optimal policy [2].
Since these policies deal with optimality with respect to infinite horizon costs, unlike the former
body of research, they give steady-state and not finite-time guarantees. Our work uses the regret
minimization framework to study the queueing bandit problem.

Bandits for queues. There is body of literature on the application of bandit models to
queueing and scheduling systems [2, 11, 12, 13, 14, 15, 16, 17]. These queueing studies focus
on infinite-horizon costs (i.e., statistically steady-state behavior, where the focus typically is on
conditions for optimality of index policies); further, the models do not typically consider user-
dependent server statistics. Our focus here is different: algorithms and analysis to optimize finite
time regret.

3 Problem Setting

We consider a discrete-time queueing system with a single queue and K servers. The servers are
indexed by k = 1, . . . ,K. Arrivals to the queue and service offered by the links are according to
product Bernoulli distribution and i.i.d. across time slots. The mean arrival rate is given by λ and
the mean service rates by the vector µ = [µk]k∈[K], with λ < maxk∈[K] µk. In any time slot, the
queue can be served by at most one server and the problem is to schedule a server in every time slot.
The scheduling decision at any time t is based on past observations corresponding to the services
obtained from the scheduled servers until time t − 1. Statistical parameters corresponding to the
service distributions are considered unknown. The queueing system evolution can be described as
follows. Let κ(t) denote the server that is scheduled at time t. Also, let Rk(t) be the service offered
by server k and S(t) denote the service offered by server κ(t) at time t, i.e., S(t) = Rκ(t)(t). If A(t)
is the number of arrivals at time t, then the queue-length at time t is given by:

Q(t) = (Q(t− 1) +A(t)− S(t))+ .

Our goal in this paper is to focus attention on how queueing behavior impacts regret minimiza-
tion in bandit algorithms. We evaluate the performance of scheduling policies against the policy
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Figure 1: Queue-regret Ψ(t) under Q-ThS in a system with K = 5, ε = 0.1 and ∆ = 0.17

that schedules the (unique) optimal server in every time slot, i.e., the server k∗ := arg maxk∈[K] µk
with the maximum mean rate µ∗ := maxk∈[K] µk. Let Q(t) be the queue-length vector at time t
under our specified algorithm, and let Q∗(t) be the corresponding vector under the optimal policy.
We define regret as the difference in mean queue-lengths for the two policies. That is, the regret is
given by:

Ψ(t) := E [Q(t)−Q∗(t)] .

We use the terms queue-regret or simply regret to refer to Ψ(t).
Throughout, when we evaluate queue-regret, we do so under the assumption that the queueing

system starts in the steady state distribution of the system induced by the optimal policy, as follows.

Assumption 1 (Initial State). Both Q(0) and Q∗(0) have the same initial state distribution, and
this is chosen to be the stationary distribution of Q∗(t); this distribution is denoted π(λ,µ∗).

4 The Late Stage

We analyze the performance of a scheduling algorithm with respect to queue-regret as a function
of time and system parameters like: (a) the load on the system ε := (µ∗−λ), and (b) the minimum
difference between the rates of the best and the next best servers ∆ := µ∗ −maxk 6=k∗ µk.

As a preview of the theoretical results, Figure 1 shows the evolution of queue-regret with time
in a system with 5 servers under a scheduling policy inspired by Thompson Sampling. Exact details
of the scheduling algorithm can be found in Section 4.2. It is observed that the regret goes through
a phase transition. In the initial stage, when the algorithm has not estimated the service rates well
enough to stabilize the queue, the regret grows poly-logarithmically similar to the classical MAB
setting. After a critical point when the algorithm has learned the system parameters well enough to
stabilize the queue, the queue-length goes through regenerative cycles as the queue become empty.
In other-words, instead of the queue length being continuously backlogged, the queuing system has
a stochastic cyclical behavior where the queue builds up, becomes empty, and this cycle recurs.
Thus at the beginning of every regenerative cycle, there is no accumulation of past errors and the
sample-path queue-regret is at most zero. As the algorithm estimates the parameters better with
time, the length of the regenerative cycles decreases and the queue-regret decays to zero.

Notation: For the results in Section 4, the notation f(t) = O (g(K, ε, t)) for all t ∈ h(K, ε)
(here, h(K, ε) is an interval that depends on K, ε) implies that there exist constants C and t0
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independent of K and ε such that f(t) ≤ Cg(K, ε, t) for all t ∈ (t0,∞) ∩ h(K, ε).

4.1 An Asymptotic Lower Bound

We establish an asymptotic lower bound on regret for the class of α-consistent policies; this class
for the queueing bandit is a generalization of the α-consistent class used in the literature for the
traditional stochastic MAB problem [7, 18, 19]. The precise definition is given below (1{·} below
is the indicator function).

Definition 1. A scheduling policy is said to be α-consistent (for some α ∈ (0, 1)) if given a problem
instance, there holds (λ,µµµ), E

[∑t
s=1 1{κ(s) = k}

]
= O(tα) for all k 6= k∗.

Theorem 1 below gives an asymptotic lower bound on the average queue-regret and per-queue
regret for an arbitrary α-consistent policy.

Theorem 1. For any problem instance (λ,µµµ) and any α-consistent policy, the regret Ψ(t) satisfies

Ψ(t) ≥
(
λ

4
D(µµµ)(1− α)(K − 1)

)
1

t

for infinitely many t, where

D(µµµ) =
∆

KL
(
µmin,

µ∗+1
2

) . (2)

Outline for theorem 1. The proof of the lower bound consists of three main steps. First, in lemma 21,
we show that the regret at any time-slot is lower bounded by the probability of a sub-optimal sched-
ule in that time-slot (up to a constant factor that is dependent on the problem instance). The key
idea in this lemma is to show the equivalence of any two systems with the same marginal service
distributions with respect to bandit algorithms. This is achieved through a carefully constructed
coupling argument that maps the original system with independent service across links to another
system with service process that is dependent across links but with the same marginal distribution.

As a second step, the lower bound on the regret in terms of the probability of a sub-optimal
schedule enables us to obtain a lower bound on the cumulative queue-regret in terms of the number
of sub-optimal schedules. We then use a lower bound on the number of sub-optimal schedules for
α-consistent policies (lemma 19 and corollary 20) to obtain a lower bound on the cumulative regret.
In the final step, we use the lower bound on the cumulative queue-regret to obtain an infinitely
often lower bound on the queue-regret.

4.2 Achieving the Asymptotic Bound

We next focus on algorithms that can (up to a poly log factor) achieve a scaling of O (1/t) . A key
challenge in showing this is that we will need high probability bounds on the number of times the
correct arm is scheduled, and these bounds to hold over the late-stage regenerative cycles of the
queue. Recall that these regenerative cycles are random time intervals with Θ(1) expected length
for the optimal policy, and whose lengths are correlated with the bandit algorithm decisions (the
queue length evolution is dependent on the past history of bandit arm schedules). To address this,
we propose a slightly modified version of the Thompson Sampling algorithm. The algorithm, which
we call Q-ThS, has an explicit structured exploration component similar to ε-greedy algorithms.
This structured exploration provides sufficiently good estimates for all arms (including sub-optimal
ones) in the late stage.
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We describe the algorithm we employ in detail. Let Tk(t) be the number of times server k
is assigned in the first t time-slots and µ̂µµ(t) be the empirical mean of service rates at time-slot
t from past observations (until t − 1). At time-slot t, Q-ThS decides to explore with probability
min{1, 3K log2 t/t}, otherwise it exploits. When exploring, it chooses a server uniformly at ran-
dom. The chosen exploration rate ensures that we are able to obtain concentration results for the
number of times any link is sampled.3 When exploiting, for each k ∈ [K], we pick a sample θ̂k(t)
of distribution Beta (µ̂k(t)Tk(t− 1) + 1, (1− µ̂k(t))Tk(t− 1) + 1) , and schedule the arm with the
largest sample (the standard Thompson sampling for Bernoulli arms [20]). Details of the algorithm
are given in Algorithm 1 in the Appendix.

We now show that, for a given problem instance (λ,µµµ) (and therefore fixed ε), the regret under
Q-ThS scales as O (poly(log t)/t). We state the most general form of the asymptotic upper bound
in theorem 2. A slightly weaker version of the result is given in corollary 3. This corollary is useful
to understand the dependence of the upper bound on the load ε and the number of servers K.

Notation : For the following results, the notation f(t) = O (g(K, ε, t)) for all t ∈ h(K, ε) (here,
h(K, ε) is an interval that depends on K, ε) implies that there exist constants C and t0 independent
of K and ε such that f(t) ≤ Cg(K, ε, t) for all t ∈ (t0,∞) ∩ h(K, ε).

Theorem 2. Consider any problem instance (λ,µµµ). Let w(t) = exp

((
2 log t

∆

)2/3
)
, v′(t) = 6K

ε w(t)

and v(t) = 24
ε2

log t+ 60K
ε

v′(t) log2 t
t . Then, under Q-ThS the regret Ψ(t), satisfies

Ψ(t) = O

(
Kv(t) log2 t

t

)
for all t such that w(t)

log t ≥
2
ε , t ≥ exp

(
6/∆2

)
and v(t) + v′(t) ≤ t/2.

Corollary 3. Let w(t) be as defined in Theorem 2. Then,

Ψ(t) = O

(
K

log3 t

ε2t

)
for all t such that w(t)

log t ≥
2
ε , t

w(t) ≥ max
{

24K
ε , 15K2 log t

}
, t ≥ exp

(
6/∆2

)
and t

log t ≥
198
ε2

.

Outline for Theorem 2. As mentioned earlier, the central idea in the proof is that the sample-path
queue-regret is at most zero at the beginning of regenerative cycles, i.e., instants at which the queue
becomes empty. The proof consists of two main parts – one which gives a high probability result
on the number of sub-optimal schedules in the exploit phase in the late stage, and the other which
shows that at any time, the beginning of the current regenerative cycle is not very far in time.

The former part is proved in lemma 9, where we make use of the structured exploration compo-
nent of Q-ThS to show that all the links, including the sub-optimal ones, are sampled a sufficiently
large number of times to give a good estimate of the link rates. This in turn ensures that the
algorithm schedules the correct link in the exploit phase in the late stages with high probability.

For the latter part, we prove a high probability bound on the last time instant when the queue
was zero (which is the beginning of the current regenerative cycle) in lemma 15. Here, we make
use of a recursive argument to obtain a tight bound. More specifically, we first use a coarse high
probability upper bound on the queue-length (lemma 11) to get a first cut bound on the beginning of

3The exploration rate could scale like log t/t if we knew ∆ in advance; however, without this knowledge, additional
exploration is needed.
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the regenerative cycle (lemma 12). This bound on the regenerative cycle-length is then recursively
used to obtain tighter bounds on the queue-length, and in turn, the start of the current regenerative
cycle (lemmas 14 and 15 respectively).

The proof of the theorem proceeds by combining the two parts above to show that the main
contribution to the queue-regret comes from the structured exploration component in the current
regenerative cycle, which gives the stated result.

5 The Early Stage in the Heavily Loaded Regime

In order to study the performance of α-consistent policies in the early stage, we consider the heavily
loaded system, where the arrival rate λ is close to the optimal service rate µ∗, i.e., ε = µ∗ − λ→ 0.
This is a well studied asymptotic in which to study queueing systems, as this regime leads to
fundamental insight into the structure of queueing systems. See, e.g., [9, 10] for extensive surveys.
Analyzing queue-regret in the early stage in the heavily loaded regime has the effect that the
the optimal server is the only one that stabilizes the queue. As a result, in the heavily loaded
regime, effective learning and scheduling of the optimal server play a crucial role in determining
the transition point from the early stage to the late stage. For this reason the heavily loaded regime
reveals the behavior of regret in the early stage.

Notation: For all the results in this section, the notation f(t) = O (g(K, ε, t)) for all t ∈ h(K, ε)
(h(K, ε) is an interval that depends on K, ε) implies that there exist numbers C and ε0 that depend
on ∆ such that for all ε ≥ ε0, f(t) ≤ Cg(K, ε, t) for all t ∈ h(K, ε).

Theorem 4 gives a lower bound on the regret in the heavily loaded regime, roughly in the time
interval

(
K1/(1−α), O (K/ε)

)
for any α-consistent policy.

Theorem 4. Given any problem instance (λ,µµµ), and for any α-consistent policy and γ > 1
1−α , the

regret Ψ(t) satisfies

Ψ(t) ≥ D(µµµ)

2
(K − 1)

log t

log log t

for t ∈
[
max{C1K

γ , τ}, (K − 1)D(µµµ)
2ε

]
where D(µµµ) is given by equation 2, and τ and C1 are constants

that depend on α, γ and the policy.

Outline for Theorem 4. The crucial idea in the proof is to show a lower bound on the queue-regret
in terms of the number of sub-optimal schedules (Lemma 22). As in Theorem 1, we then use a lower
bound on the number of sub-optimal schedules for α-consistent policies (given by Corollary 20) to
obtain a lower bound on the queue-regret.

Theorem 4 shows that, for any α-consistent policy, it takes at least Ω (K/ε) time for the queue-
regret to transition from the early stage to the late stage. In this region, the scaling O(log t/ log log t)
reflects the fact that queue-regret is dominated by the cumulative regret growing like O(log t). A
reasonable question then arises: after time Ω (K/ε), should we expect the regret to transition into
the late stage regime analyzed in the preceding section?

We answer this question by studying when Q-ThS achieves its late-stage regret scaling of
O
(
poly(log t)/ε2t

)
scaling; as we will see, in an appropriate sense, Q-ThS is close to optimal in its

transition from early stage to late stage, when compared to the bound discovered in Theorem 4.
Formally, we have Corollary 5, which is an analog to Corollary 3 under the heavily loaded regime.

8



Corollary 5. For any problem instance (λ,µµµ), any γ ∈ (0, 1) and δ ∈ (0,min(γ, 1− γ)), the regret
under Q-ThS satisfies

Ψ(t) = O

(
K log3 t

ε2t

)

∀t ≥ C2 max

{(
1
ε

) 1
γ−δ ,

(
K
ε

) 1
1−γ , (K2)

1
1−γ−δ ,

(
1
ε2

) 1
1−δ

}
, where C2 is a constant independent of ε (but

depends on ∆, γ and δ).

By combining the result in Corollary 5 with Theorem 4, we can infer that in the heavily loaded
regime, the time taken by Q-ThS to achieve O

(
poly(log t)/ε2t

)
scaling is, in some sense, order-wise

close to the optimal in the α-consistent class. Specifically, for any β ∈ (0, 1), there exists a scaling
of K with ε such that the queue-regret under Q-ThS scales as O

(
poly(log t)/ε2t

)
for all t > (K/ε)β

while the regret under any α-consistent policy scales as Ω (K log t/ log log t) for t < K/ε.

We conclude by noting that while the transition point from the early stage to the late stage
for Q-ThS is near optimal in the heavily loaded regime, it does does not yield optimal regret
performance in the early stage in general. In particular, recall that at any time t, the structured
exploration component in Q-ThS is invoked with probability 3K log2 t/t. As a result, we see that, in
the early stage, queue-regret under Q-ThS could be a log2 t-factor worse than the Ω (log t/ log log t)
lower bound shown in Theorem 4 for the α-consistent class. This intuition can be formalized: it
is straightforward to show an upper bound of 2K log3 t for any t > max{C3, U}, where C3 is a
constant that depends on ∆ but is independent of K and ε; we omit the details.

6 Simulation Results

In this section we present simulation results of various queueing bandit systems with K servers.
These results corroborate our theoretical analysis in Sections 4 and 5. In particular a phase tran-
sition from unstable to stable behavior can be observed in all our simulations, as predicted by our
analysis. In the remainder of the section we demonstrate the performance of Algorithm 1 under
variations of system parameters like the traffic (ε), the gap between the optimal and the suboptimal
servers (∆), and the size of the system (K). We also compare the performance of our algorithm
with versions of UCB-1 [4] and Thompson Sampling [20] without structured exploration.

Variation with εεε and K. In Figure 2 we see the evolution of Ψ(t) in systems of size 5 and 7 . It
can be observed that the regret decays faster in the smaller system, which is predicted by Theorem 2
in the late stage and Corollary 5 in the early stage. The performance of the system under different
traffic settings can be observed in Figure 2. It is evident that the regret of the queueing system
grows with decreasing ε. This is in agreement with our analytical results (Corollaries 3 and 5). In
Figure 2 we can observe that the time at which the phase transition occurs shifts towards the right
with decreasing ε which is predicted by Corollaries 3 and 5.

7 Discussion and Conclusion

This paper provides the first regret analysis of the queueing bandit problem, including a charac-
terization of regret in both early and late stages, together with analysis of the switching time; and
an algorithm (Q-ThS) that is asymptotically optimal (to within poly-logarithmic factors) and also
essentially exhibits the correct switching behavior between early and late stages. There remain
substantial open directions for future work.
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Figure 2: Variation of Queue-regret Ψ(t) with K and ε under Q-Ths. The phase-transition point
shifts towards the right as ε decreases. The efficiency of learning decreases with increase in the size
of the system.

First, is there a single algorithm that gives optimal performance in both early and late stages,
as well as the optimal switching time between early and late stages? The price paid for structured
exploration by Q-ThS is an inflation of regret in the early stage. An important open question
is to find a single, adaptive algorithm that gives good performance over all time. As we note
in the appendix, classic (unstructured) Thompson sampling is an intriguing candidate from this
perspective.

Second the most significant technical hurdle in finding a single optimal algorithm is the difficulty
of establishing concentration results for the number of suboptimal arm pulls within a regenerative
cycle whose length is dependent on the bandit strategy. Such concentration results would be needed
in two different limits: first, as the start time of the regenerative cycle approaches infinity (for the
asymptotic analysis of late stage regret); and second, as the load of the system increases (for the
analysis of early stage regret in the heavily loaded regime). Any progress on the open directions
described above would likely require substantial progress on these technical questions as well.
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Appendix

We present our theoretical results in a more general setting where there are U queues and K servers,
such that 1 ≤ U ≤ K. All the results in the body of the paper become a special case of this setting
when U = 1. The queues and servers are indexed by u = 1, . . . , U and k = 1, . . . ,K respectively.
Arrivals to queues and service offered by the links are according to product Bernoulli distribution
and i.i.d. across time slots. The mean arrival rates are given by the vector λ = (λu)u∈[U ] and the
mean service rates by the matrix µ = [µuk]u∈[U ],k∈[K].

In any time slot, each server can serve at most one queue and each queue can be served by
at most one server. The problem is to schedule, in every time slot, a matching in the complete
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Algorithm 1 Q-ThS

At time t,

Let E(t) be an independent Bernoulli sample of mean min{1, 3K log2 t
t }.

if E(t) = 1 then
Explore:
Schedule a server uniformly at random.

else
Exploit:
For each k ∈ [K], pick a sample θ̂k(t) of distribution,

θ̂k(t) ∼ Beta (µ̂k(t)Tk(t− 1) + 1, (1− µ̂k(t))Tk(t− 1) + 1) .

Schedule a server

κ(t) ∈ arg max
k∈[K]

θ̂k(t).

end if

bipartite graph between queues and servers. The scheduling decision at any time t is based on
past observations corresponding to the services obtained for the scheduled matchings until time
t − 1. Statistical parameters corresponding to the service distributions are considered unknown.
The relevant notation for this system has been provided in Table 1.

The queueing system evolution can be described as follows. Let κu(t) denote the server that
is assigned to queue u at time t. Therefore, the vector κκκ(t) = (κu(t)u∈[U ]) gives the matching
scheduled at time t. Let Ruk(t) be the service offered to queue u by server k and Su(t) denote the
service offered to queue u by server κu(t) at time t. If A(t) is the (binary) arrival vector at time t,
then the queue-length vector at time t is given by:

Q(t) = (Q(t− 1) + A(t)− S(t))+ .

Regret Against a Unique Optimal Matching

Our goal in this paper is to focus attention on how queueing behavior impacts regret minimization
in bandit algorithms. To emphasize this point, we consider a somewhat simplified switch schedul-
ing system. In particular, we assume for every queue, there is a unique optimal server with the
maximum expected service rate for that queue. Further, we assume that the optimal queue-server
pairs form a matching in the complete bipartite graph between queues and servers, that we call the
optimal matching; and that this optimal matching stabilizes every queue.

11



Table 1: General Notation

Symbol Description

λu Expected rate of arrival to queue u

λmin Minimum arrival rate across all queues

Au(t) Arrival at time t to queue u

µuk Expected service rate of server k for queue u

Ruk(t) Service rate between server k queue u at time t

k∗u Best server for queue u

µ∗u Expected rate of best server for queue u

µmax Maximum service rate across all links

µmin Minimum service rate across all links

∆
Minimum (among all queues) difference

between the best and second best servers

κu(t) server assigned to queue u at time t

Su(t)
Potential service provided by server

assigned to queue u at time t

Qu(t) queue-length of queue u at time t

Q∗u(t)
queue-length of queue u at time t

for the optimal strategy

Ψu(t) Regret for queue u at time t

Formally, make the following definitions:

µ∗u := max
k∈[K]

µuk, u ∈ [U ]; (3)

k∗u := arg max
k∈[K]

µuk, u ∈ [U ]; (4)

εu := µ∗u − λu, u ∈ [U ]; (5)

∆uk := µ∗u − µuk, u ∈ [U ], k ∈ [K]; (6)

∆ := min
u∈[U ],k 6∈k∗u

∆uk; (7)

µmin := min
u∈[U ],k∈[K]

µuk; (8)

µmax := max
u∈[U ],k∈[K]

µuk; (9)

λmin := min
u∈[U ]

λu. (10)

The following assumptions will be in force throughout the paper.

Assumption 2 (Optimal Matching). There is a unique optimal matching, i.e.:

1. There is a unique optimal server for each queue: k∗u is a singleton, i.e., ∆uk > 0 for k 6= k∗u,
for all u,

2. The optimal queue-server pairs for a matching: For any u′ 6= u, k∗u 6= k∗u′.

Assumption 3 (Stability). The optimal matching stabilizes every queue, i.e., the arrival rates lie
within the stability region: εu > 0 for all u ∈ [U ].
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The assumption of a unique optimal matching essentially means that the queues and servers
are solving a pure coordination problem; for example, in the crowdsourcing example described in
the introduction, this would correspond to the presence of a unique worker best suited to each type
of job. Note that the setting described in Section 3 is equivalent to the unique optimal matching
case when U = 1. We now describe an algorithm for the unique best match setting which is a more
general version of Algorithm 1

Algorithm 2 Q-ThS(match)

At time t,

Let E(t) be an independent Bernoulli sample of mean min{1, 3K log2 t
t }.

if E(t) = 1 then
Explore:
Schedule a matching from E uniformly at random.

else
Exploit:
For each k ∈ [K], u ∈ [U ] , pick a sample θ̂uk(t) of distribution,

θ̂uk(t) ∼ Beta (µ̂uk(t)Tuk(t− 1) + 1, (1− µ̂uk(t))Tuk(t− 1) + 1) .

Compute for all u ∈ [U ]

k̂u(t) := arg max
k∈[K]

θ̂uk(t)

Schedule a matching κκκ(t) such that

κκκ(t) ∈ arg min
κκκ∈M

∑
u∈[U ]

1
{
κu 6= k̂u(t)

}
,

i.e., κκκ(t) is the projection of k̂̂k̂k(t) onto the space of all matchings M with Hamming distance as
metric.
end if

The notation specific to Algorithm 2 has been provided in Table 2.

8 Proofs

We provide details of the proofs for Theorem 2 in Section 8.1 and for Theorems 16 and 17 in
Section 8.2. In each section, we state and prove a few intermediate lemmas that are useful in
proving the theorems.

8.1 Regret Upper Bound for Q-ThS(match)

Theorem 2 is a special case (U = 1) of Theorem 6 stated below,

Theorem 6. Consider any problem instance (λλλ,µµµ) which has a single best matching. For any

u ∈ [U ], let w(t) = exp

((
2 log t

∆

)2/3
)
, v′u(t) = 6K

εu
w(t), t ≥ exp

(
6/∆2

)
and vu(t) = 24

ε2u
log t +
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Table 2: Notation specific to Algorithm 2

Symbol Description

E(t)
Indicates if the algorithm schedules

a matching through Explore

Euk(t)
Indicates if Server k is assigned

to Queue u at time t through Explore

Iuk(t)
Indicates if Server k is assigned

to Queue u at time t through Exploit

Tuk(t)
Number of time slots Server k is assigned

to Queue u in time [1, t]

µ̂(t)
Empirical mean of service rates

at time t from past observations (until t− 1)

κκκ(t) Matching scheduled in time-slot t

60K
εu

v′u(t) log2 t
t . Then, under Q-ThS(match) the regret for queue u, Ψu(t), satisfies

Ψu(t) = O

(
Kvu(t) log2 t

t

)

for all t such that w(t)
log t ≥

2
εu

, t ≥ exp
(
6/∆2

)
and vu(t) + v′u(t) ≤ t/2.

Corollary 7. Let w(t) = exp

((
2 log t

∆

)2/3
)
. Then,

Ψu(t) = O

(
K

log3 t

ε2ut

)

for all t such that w(t)
log t ≥

2
εu

, t
w(t) ≥ max

{
24K
εu
, 15K2 log t

}
, and t

log t ≥
198
ε2u

.

As shown in Algorithm 2, E(t) indicates whether Q-ThS(match) chooses to explore at time t.
We now obtain a bound on the expected number of time-slots Q-ThS(match) chooses to explore
in an arbitrary time interval (t1, t2]. Since at any time t, Q-ThS(match) decides to explore with

probability min{1, 3K log2 t
t }, we have

E

 t2∑
l=t1+1

E(l)

 ≤ 3K

t2∑
l=t1+1

log2 l

l
≤ 3K

∫ t2

t1

log2 l

l
dl = K

(
log3 t2 − log3 t1

)
. (11)

The following lemma gives a probabilistic upper bound on the same quantity.

Lemma 8. For any t and t1 < t2,

P

 t2∑
l=t1+1

E(l) ≥ 5 max
(
log t,K

(
log3 t2 − log3 t1

)) ≤ 1

t4
.
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Proof. To prove the result, we will use the following Chernoff bound: for a sum of independent
Bernoulli random variables Y with mean EY and for any δ > 0,

P [[Y ≥ (1 + δ)EY ] ≤
(

eδ

(1 + δ)1+δ

)EY

.

If EY ≥ log t, the above bound for δ = 4 gives

P [Y ≥ 5EY ] ≤ 1

t4
.

Note that {E(l)}t2l=t1+1 are independent Bernoulli random variables and let X =
∑t2

l=t1
E(l). Now

consider the probability P [X ≥ 5 max (log t,EX)] . If EX ≥ log t, then the result is true from the
above Chernoff bound. If EX < log t, then it is possible to construct a random variable Y which is
a sum of independent Bernoulli random variables, has mean log t and stochastically dominates X,
in which case we can again use the Chernoff bound on Y . Therefore,

P [X ≥ 5 log t] ≤ P [Y ≥ 5 log t] ≤ 1

t4
.

Using inequality (11), we have the required result, i.e.,

P

 t2∑
l=t1+1

E(l) ≥ 5 max
(
log t,K

(
log3 t2 − log3 t1

)) ≤ P [X ≥ 5 max (log t,EX)] ≤ 1/t4.

Let w(t) = exp

((
2 log t

∆

)2/3
)
. The next lemma shows that, with high probability, Q-ThS(match)

does not schedule a sub-optimal matching when it exploits in the late stage.

Lemma 9. For t ≥ exp
(
6/∆2

)
,

P

 ⋃
u∈[U ]

t∑
l=w(t)+1

∑
k 6=k∗u

Iuk(l) > 0

 = O

(
UK

t3

)
.

Proof. Let Xuk(l), u = 1, 2, .., U, k = 1, 2, ..,K, l = 1, 2, 3.. be independent random variables denot-
ing the service offered in the lth assignment of the server k to queue u. Consider the events,

Tuk(w(t)) ≥ 1

2
log3(w(t)), ∀k ∈ [K], u ∈ [U ] (12)

θuk∗u(s) > µ∗u −

√
log2(s)

Tuk∗u(s)
, ∀s, s.t. w(t) + 1 ≤ s ≤ t, u ∈ [U ] (13)

and

θuk(s) ≤ µ∗u −

√
log2(s)

Tuk∗u(s)
, ∀s, k s.t. w(t) + 1 ≤ s ≤ t, k 6= k∗u, u ∈ [U ] (14)
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It can be seen that, given the above events, Q-ThS(match) schedules the optimal matching
in all time-slots in (w(t), t] in which it decides to exploit, i.e.,

∑t
l=w(t)+1

∑
k 6=k∗u Iuk(l) = 0 for all

u ∈ [U ]. We now show that the events above occur with high probability.
Note that, since the matchings in E cover all the links in the system, Tuk(w(t)) ≤ 1

2 log3(w(t)) for

some u, k implies that
∑w(t)

l=1 1 {κκκ(t) = κκκ} ≤ 1
2 log3(w(t)) for some κκκ ∈ E . Since

∑w(t)
l=1 1 {κκκ(t) = κκκ}

is a sum of i.i.d. Bernoulli random variables with mean log3(w(t)), we use Chernoff bound to prove
that event (12) occurs with high probability.

P [(12) is false] ≤
∑
κκκ∈E

P

w(t)∑
l=1

1 {κκκ(t) = κκκ} ≤ 1

2
log3(w(t))


≤ K exp

(
−1

8
log3(w(t))

)
= K exp

(
−1

8

(
2 log t

∆

)2
)

= o

(
K

t4

)
. (15)

In order to prove high probability bounds for the other two events, we define Us to be a sequence
of i.i.d uniform random variables taking values in [0, 1] for s = w(t) + 1, ..., t. Let us also define
Σu,k,l =

∑l
r=1Xuk(r). In what follows let FBeta

a,b denote the c.d.f of the Beta(a, b) distribution

while FB
n,p denotes the c.d.f. of a Binomial(n, p) distribution. Let Suk(t) = m̂uuk(t)Tuk(t) for all

u ∈ [U ], k ∈ [K].

P [(13) is false] ≤
∑
u∈[U ]

t∑
s=w(t)+1

P

[
θuk∗u(s) ≤ µ∗u −

√
log2(s)

Tuk∗u(s)

]

=
∑
u∈[U ]

t∑
s=w(t)+1

P

[
Us ≤ FBeta

Suk∗u (s)+1,Tuk∗u (s)−Suk∗u (s)+1

(
µ∗u −

√
log2(s)

Tuk∗u(s)

)]
(i)

≤
∑
u∈[U ]

t∑
s=w(t)+1

P

[
∃l ∈

{
1

2
log3(s), ..., s

}
: FB

l+1,µ∗u−
√

log2(s)
l

(
Σu,k∗u,l

)
≤ Us

∣∣∣∣∣(12) is true

]

+ o

(
UK

t3

)
≤
∑
u∈[U ]

t∑
s=w(t)+1

s∑
l= 1

2
log3(s)

P

[
Σu,k∗u,l ≤ (FB)−1

l+1,µ∗u−
√

log2(s)
l

(Us)

]
+ o

(
UK

t3

)

In (i) we use the well-known Beta-Binomial trick [] and the fact that given (12) is true, uk∗u has
been scheduled enough number of times. Now the term (FB)−1

l+1,µ∗u−
√

log2(s)
l

(Us) can be thought of

as the sum of l+ 1 i.i.d Bernoulli random variables with mean µ∗u−
√

log2(s)
l . Let Zr be a sequence

of i.i.d random variable with mean

√
log2(s)

l . Therefore we have,

P

[
Σu,k,l ≤ (FB)−1

l+1,µ∗u−
√

log2(s)
l

(Us)

]
≤ P

[
l∑

r=1

Zr ≤ 1

]
(ii)

≤ e−
log2(s)

3 (16)
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Here, (ii) is due to Chernoff-Hoeffding’s inequality. Therefore we have,

P [(13) is false] ≤ U
t∑

s=w(t)+1

s∑
l= 1

2
log3(s)

exp

(
− log2(s)

3

)
+ o

(
UK

t3

)

≤ U exp

(
−1

3
log2(w(t)) + 2 log t

)
+ o

(
UK

t3

)
= U exp

(
−1

3

(
2 log t

∆

)4/3

+ 2 log t

)
+ o

(
UK

t3

)
= o

(
UK

t3

)
.

P [(14) is false] ≤
∑

u∈[U ],k 6=k∗u

t∑
s=w(t)+1

P

[
θuk(s) > µ∗u −

√
log2(s)

Tuk∗u(s)

]

≤
∑

u∈[U ],k 6=k∗u

t∑
s=w(t)+1

P

[
θuk(s) > µ∗u −

√
log2(s)

Tuk∗u(s)

∣∣∣∣∣(12) is true

]
+ o

(
UK

t3

)
(iii)

≤
∑

u∈[U ],k 6=k∗u

t∑
s=w(t)+1

P

[
θuk(s) > µ∗u −

√
2

log(s)

∣∣∣∣∣(12) is true

]
+ o

(
UK

t3

)
(iv)

≤
∑

u∈[U ],k 6=k∗u

t∑
s=w(t)+1

P

[
θuk(s) > µuk +

∆

2

∣∣∣∣∣(12) is true

]
+ o

(
UK

t3

)
(v)

≤
∑

u∈[U ],k 6=k∗u

t∑
s=w(t)+1

P
[
∃l ∈

{
1

2
log3(s), ..., s

}
: Σu,k,l ≥ (FB)−1

l+1,µuk+ ∆
2

(Us)

]
+ o

(
UK

t3

)
(vi)

≤ o

(
UK

t3

)
We observe that given (12) is true, we have scheduled uk∗u enough number of times in order to get
(iii). In (iv) we use that fact that t ≥ exp

(
6/∆2

)
. (v) is due to the Beta-Binomial trick while (vi)

is a result of applying the Chernoff-Hoeffding bound to the first term in (v) in a manner similar to
that of (16).

For any time t, let

Bu(t) := min{s ≥ 0 : Qu(t− s) = 0}

denote the time elapsed since the beginning of the current regenerative cycle for queue u. Alter-
nately, at any time t, t−Bu(t) is the last time instant at which queue u was zero.

The following lemma gives an upper bound on the sample-path queue-regret in terms of the
number of sub-optimal schedules in the current regenerative cycle.

Lemma 10. For any t ≥ 1,

Qu(t)−Q∗u(t) ≤
t∑

l=t−Bu(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l)

 .

Proof. If Bu(t) = 0, i.e., if Qu(t) = 0, then the result is trivially true.
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Consider the case where Bu(t) > 0. Since Qu(l) > 0 for all t−Bu(t) + 1 ≤ l ≤ t, we have

Qu(l) = Qu(l − 1) +Au(l)− Su(l) ∀t−Bu(t) + 1 ≤ l ≤ t.

This implies that

Qu(t) =
t∑

l=t−Bu(t)+1

Au(l)− Su(l).

Moreover,

Q∗u(t) = max
1≤s≤t

(
Q∗u(0) +

t∑
l=s

Au(l)− S∗u(l)

)+

≥
t∑

l=t−Bu(t)+1

Au(l)− S∗u(l).

Combining the above two expressions, we have

Qu(t)−Q∗u(t) ≤
t∑

l=t−Bu(t)+1

S∗u(l)− Su(l)

=

t∑
l=t−Bu(t)+1

∑
k∈[K]

(
Ruk∗u(l)−Ruk(l)

)
(Euk(l) + Iuk(l))

≤
t∑

l=t−Bu(t)+1

∑
k 6=k∗u

(Euk(l) + Iuk(l))

≤
t∑

l=t−Bu(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l)

 ,

where the second inequality follows from the assumption that the service provided by each of the
links is bounded by 1, and the last inequality from the fact that

∑
k∈[K] Euk(l) = E(l) ∀l,∀u ∈

[U ].

In the next lemma, we derive a coarse high probability upper bound on the queue-length. This
bound on the queue-length is used later to obtain a first cut bound on the length of the regenerative
cycle in Lemma 12.

Lemma 11. For any l ∈ [1, t],

P [Qu(l) > 2Kw(t)] = O

(
UK

t3

)
∀t s.t. w(t)

log t ≥
2
εu

and t ≥ exp
(
6/∆2

)
.

Proof. From Lemma 10,

Qu(t)−Q∗u(t) ≤
t∑

l=t−Bu(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l)

 ≤ t∑
l=1

E(l) +
∑
k 6=k∗u

Iuk(l)

 .

Since Q∗u(t) is distributed according to π(λu,µ∗u),

P [Q∗u(t) > w(t)] =
λu
µ∗u

(
λu (1− µ∗u)

(1− λu)µ∗u

)w(t)

≤ exp

(
w(t) log

(
λu (1− µ∗u)

(1− λu)µ∗u

))
≤ 1

t3
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if w(t)
log t ≥

2
εu
. The last inequality follows from the following bound –

log

(
(1− λu)µ∗u
λu (1− µ∗u)

)
= log

(
1 +

εu
λu (1− µ∗u)

)
≥ log (1 + 4εu) since (λu (1− µ∗u) < 1/4)

≥ 3

2
εu.

Moreover, from Lemma 8, we have

P

[
t∑
l=1

E(l) > Kw(t)

]
= o

(
1

t3

)
.

Now, note that
t∑
l=1

∑
k 6=k∗u

Iuk(l) ≤ (K − 1)w(t) +
t∑

l=w(t)+1

∑
k 6=k∗u

Iuk(l).

Therefore,

P

 t∑
l=1

∑
k 6=k∗u

Iuk(l) > (K − 1)w(t)

 ≤ P

 t∑
l=w(t)+1

∑
k 6=k∗u

Iuk(l) > 0

 = O

(
UK

t3

)
from Lemma 9. Using the inequalities above, we have

P [Qu(t) > 2Kw(t)] ≤ P [Q∗u(t) > w(t)] + P

[
t∑
l=1

E(l) > Kw(t)

]

+ P

 t∑
l=1

∑
k 6=k∗u

Iuk(l) > (K − 1)w(t)


≤ 1

t3
+O

(
UK

t3

)
= O

(
UK

t3

)
.

Lemma 12. Let v′u(t) = 6K
εu
w(t) and let vu be an arbitrary function. Then,

P
[
Bu (t− vu(t)) > v′u(t)

]
= O

(
UK

t3

)
∀t s.t. w(t)

log t ≥
2
εu

,t ≥ exp
(
6/∆2

)
and vu(t) + v′u(t) ≤ t/2.

Proof. Let r(t) := t− vu(t). Consider the events

Qu(r(t)− v′u(t)) ≤ 2Kw(t), (17)

r(t)∑
l=r(t)−v′u(t)+1

Au(l)−Ruk∗u(l) ≤ −εu
2
v′u(t), (18)

r(t)∑
l=r(t)−v′u(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l) ≤ Kw(t). (19)
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By the definition of v′u(t),

2Kw(t)− εu
2
v′u(t) ≤ −Kw(t).

Given Events (17)-(19), the above inequality implies that

Qu(r(t)− v′u(t)) +

r(t)∑
l=r(t)−v′u(t)+1

Au(l) ≤
r(t)∑

l=r(t)−v′u(t)+1

Ruk∗u(l)−

E(l) +
∑
k 6=k∗u

Iuk(l)


≤

r(t)∑
l=r(t)−v′u(t)+1

Su(l),

which further implies that Qu(l) = 0 for some l ∈ [r(t)− v′u(t) + 1, r(t)]. This gives us that
Bu(r(t)) ≤ v′u(t).

We now show that each of the events (17)-(19) occur with high probability. Consider the
event (18) and note that Au(l) − Ruk∗u(l) are i.i.d. random variables with mean −εu and bounded
between −1 and 1. Using Chernoff bound for sum of bounded i.i.d. random variables, we have

P

 r(t)∑
l=r(t)−v′u(t)+1

Au(l)−Ruk∗u(l) > −εu
2
v′u(t)

 ≤ exp

(
−ε

2
u

8
v′u(t)

)
≤ 1

t3

since v′u(t) ≥ 6K
εu
w(t) ≥ 24

ε2u
log t.

By Lemmas 11, 9 and 8, the probability that any of the events (17), (19) does not occur is

O
(
UK
t3

)
∀t s.t. w(t)

log t ≥
2
εu

and vu(t) + v′u(t) ≤ t/2, and therefore we have the required result.

Using the preceding upper bound on the regenerative cycle-length, we derive tighter bounds on
the queue-length and the regenerative cycle-length in Lemmas 14 and 15 respectively. The following
lemma is a useful intermediate result.

Lemma 13. For any u ∈ [U ] and t2 s.t. 1 ≤ t2 ≤ t,

P

 max
1≤s≤t2


t2∑

l=t2−s+1

Au(l)−Ruk∗u(l)

 ≥ 2 log t

εu

 ≤ 1

t3
.

Proof. Let Xs =
∑t2

l=t2−s+1Au(l)− Ruk∗u(l). Since Xs is the sum of s i.i.d. random variables with
mean εu and is bounded within [−1, 1], Hoeffding’s inequality gives

P
[
Xs ≥

2 log t

εu

]
= P

[
Xs − EXs ≥ εus+

2 log t

εu

]

≤ exp

−2
(
εus+ 2 log t

εu

)2

4s


≤ exp (−4 log t) ,

where the last inequality follows from the fact that (a + b)2 > 4ab for any a, b ≥ 0. Using union
bound over all 1 ≤ s ≤ t2 gives the required result.
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Lemma 14. Let v′u(t) = 6K
εu
w(t) and vu be an arbitrary function. Then,

P
[
Qu(t− vu(t)) >

(
2

εu
+ 5

)
log t+ 30K

v′u(t) log2 t

t

]
= O

(
UK

t3

)
∀t s.t. w(t)

log t ≥
2
εu

,t ≥ exp
(
6/∆2

)
and vu(t) + v′u(t) ≤ t/2.

Proof. Let r(t) = t− vu(t). Now, consider the events

Bu(r(t)) ≤ v′u(t), (20)

r(t)∑
l=r(t)−s+1

Au(l)−Ruk∗u(l) ≤ 2 log t

εu
1 ≤ s ≤ v′u(t), (21)

r(t)∑
l=r(t)−v′u(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l) ≤ 5 log t+ 5K
(
log3 (r(t))− log3

(
r(t)− v′u(t)

))
. (22)

Given the above events, we have

Qu(r(t)) =

r(t)∑
l=r(t)−Bu(r(t))+1

Au(l)− S(l)

≤
r(t)∑

l=r(t)−Bu(r(t))+1

Au(l)−Ruk∗u(l) + E(l) +
∑
k 6=k∗

Iuk(l)

≤
(

2

εu
+ 5

)
log t+ 5K

(
log3 (r(t))− log3

(
r(t)− v′u(t)

))
≤
(

2

εu
+ 5

)
log t+ 15K

v′u(t) log2 t

(r(t)− v′u(t))

≤
(

2

εu
+ 5

)
log t+ 30K

v′u(t) log2 t

t
,

where the last inequality is true if vu(t) + v′u(t) ≤ t/2. From Lemmas 12, 13, 9 and 8, probability
of each the events (20)-(22) is 1−O

(
UK
t3

)
and therefore, we have the required result.

Lemma 15. Let v′u(t) = 6K
εu
w(t) and vu(t) = 24 log t

ε2u
+ 60K

εu

v′u(t) log2 t
t . Then,

P [Bu(t) > vu(t)] = O

(
UK

t3

)
∀t s.t. w(t)

log t ≥
2
εu

,t ≥ exp
(
6/∆2

)
and vu(t) + v′u(t) ≤ t/2.

Proof. Let r(t) = t− vu(t). As in Lemma 12, consider the events

Qu(r(t)) ≤
(

2

εu
+ 5

)
log t+ 30K

v′u(t) log2 t

t
, (23)
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t∑
l=r(t)+1

Au(l)−Ruk∗u(l) ≤ −εu
2
vu(t), (24)

t∑
l=r(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l) ≤ 5 log t+ 5K
(
log3 t− log3 (r(t))

)
. (25)

The definition of vu(t) and events (23)-(25) imply that

Qu(r(t)) +
t∑

l=r(t)+1

Au(l) ≤
t∑

l=r(t)+1

Ruk∗u(l)−
t∑

l=r(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l)

≤
t∑

l=r(t)+1

Su(l),

which further implies that Q(l) = 0 for some l ∈ [r(t) + 1, t] and therefore Bu(t) ≤ vu(t). We
can again show that each of the events (23)-(25) occurs with high probability. Particularly, by
Lemmas 8, 9 and 14, the probability that any one of the events (23), (25) does not occur is O

(
UK
t3

)
∀t s.t. w(t)

log t ≥
2
εu

and vu(t) + v′u(t) ≤ t/2. We can bound the probability of event (24) in the same

way as event (21) in Lemma 12 to show that it occurs with probability at least 1
t3
. Combining all

these gives us the required high probability result.

Proof of Theorem 6. The proof is based on two main ideas: one is that the regenerative cycle length
is not very large, and the other is that the algorithm has correctly identified the optimal matching
in late stages. We combine Lemmas 9 and 15 to bound the regret at any time t s.t. w(t)

log t ≥
2
εu

and

vu(t) + v′u(t) ≤ t/2:

Ψu(t) = E [Qu(t)−Q∗u(t)]

≤ E

[
Qu(t)−Q∗u(t)

∣∣∣∣∣Bu(t) ≤ vu(t)

]
P [Bu(t) ≤ vu(t)]

+ E

[
Qu(t)−Q∗u(t)

∣∣∣∣∣Bu(t) > vu(t)

]
P [Bu(t) > vu(t)]

≤ E

 t∑
l=t−vu(t)+1

E(l) +
∑
k 6=k∗u

Iuk(l)

+ tP [Bu(t) > vu(t)] (26)

≤ K
(
log3(t)− log3(t− vu(t))

)
+ tP

 t∑
l=t−vu(t)+1

∑
k 6=k∗u

Iuk(l) > 0

+ tP [Bu(t) > vu(t)] (27)

≤ 3K log2 t log

(
1 +

vu(t)

t− vu(t)

)
+O

(
UK

t2

)
= O

(
K
vu(t) log2 t

t− vu(t)

)
+O

(
U

tw(t)

)
= O

(
K
vu(t) log2 t

t

)
,

where (26) follows from Lemma 10, and the last two terms in inequality (27) are bounded using
Lemmas 9 and 15.

22



Proof of Corollary 7. We first note the following:

(i) t
w(t) ≥

24K
εu

implies that v′u(t) ≤ t
4 ,

(ii) t
w(t) ≥ 15K2 log t implies that 24

ε2u
log t ≥ 60K

εu

v′u(t) log2 t
t , and therefore vu(t) ≤ 48

ε2u
log t

(iii) t
log t ≥

198
ε2u

implies that vu(t) ≤ t
4 .

These inequalities when applied to Theorem 6 give the required result.

8.2 Lower Bounds for a Class of Policies

As mentioned earlier, we prove asymptotic and early stage lower bounds for a class of policies called
the α-consistent class (Definition 1). As before we will be proving our results for a more general
case where there are U queues and K servers. Theorems 1 and 4 are special cases of the analogous
theorems stated below, under the unique optimal matching assumption.

Theorem 16. For any problem instance (λλλ,µµµ) with a unique optimal matching, and any α-
consistent policy, the regret ΨΨΨ(t) satisfies

(a)

1

U

∑
u∈[U ]

Ψu(t) ≥
(
λmin

8
D(µµµ)(1− α)(K − 1)

)
1

t
,

(b) and for any u ∈ [U ],

Ψu(t) ≥
(
λmin

8
D(µµµ)(1− α) max {U − 1, 2(K − U)}

)
1

t

for infinitely many t, where

D(µµµ) =
∆

KL
(
µmin,

µmax+1
2

) . (28)

Theorem 17. Given any problem instance (λλλ,µµµ), and for any α-consistent policy and γ > 1
1−α ,

the regret ΨΨΨ(t) satisfies

(a)

1

U

∑
u∈[U ]

Ψu(t) ≥ D(µµµ)

4
(K − 1)

log t

log log t
,

for t ∈
[
max{C4K

γ , τ}, (K − 1)D(µµµ)
4ε̄

]
, and

(b) for any u ∈ [U ],

Ψu(t) ≥ D(µµµ)

4
max {U − 1, 2(K − U)} log t

log log t

for t ∈
[
max{C4K

γ , τ}, (K − 1)D(µµµ)
2εu

]
,
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where D(µµµ) is given by equation 28, ε̄ = 1
U

∑
u∈[U ] εu, and τ and C4 are constants that depend on

α, γ and the policy.

In order to prove Theorems 16 and 17, we use techniques from existing work in the MAB
literature along with some new lower bounding ideas specific to queueing systems. Specifically, we
use lower bounds for α-consistent policies on the expected number of times a sub-optimal server
is scheduled. This lower bound, shown (in Lemma 19) specifically for the problem of scheduling a
unique optimal matching, is similar in style to the traditional bandit lower bound by Lai et al. [7]
but holds in the non-asymptotic setting. Also, as opposed the traditional change of measure proof
technique used in [7], the proof (similar to the more recent ones [21, 22, 19]) uses results from
hypothesis testing (Lemma 18).

Lemma 18 ([23]). Consider two probability measures P and Q, both absolutely continuous with
respect to a given measure. Then for any event A we have:

P (A) +Q(Ac) ≥ 1

2
exp{−min(KL(P ||Q),KL(Q||P ))}.

Proof. Let p = P (A) and q = Q(Ac) . From standard properties of KL divergence we have that,

KL(P ||Q) ≥ KL(p, q)

Therefore, it is sufficient to prove that

p+ q ≥ 1

2
exp

(
−p log

p

1− q
− (1− p) log

1− p
q

)
=

1

2

(
1− q
p

)p( q

1− p

)1−p
.

Now, (
1− q
p

)p( q

1− p

)1−p
=

(√
1− q
p

)2p(√
q

1− p

)2(1−p)

≤
(

1

2

(
2p ·

√
1− q
p

+ 2(1− p) ·
√

q

1− p

))2

=
(√

p(1− q) +
√
q(1− p)

)2

≤ 2(p(1− q) + q(1− p))
< 2(p+ q)

as required.

Lemma 19. For any problem instance (λλλ,µµµ) and any α-consistent policy, there exist constants τ
and C s.t. for any u ∈ [U ], k 6= k∗u and t > τ ,

E [Tuk(t)] +
∑
u′ 6=u

1 {k∗u′ = k}E
[
Tu′k∗u(t)

]
≥ 1

KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) .

Proof. Without loss of generality, let the optimal servers for the U queues be denoted by the first
U indices. In other words, a server k > U is not an optimal server for any queue, i.e., for any
u′ ∈ [U ], K ≥ k > U , 1

{
k∗u′ = k

}
= 0. Also, let β = µmax+1

2 .
We will first consider the case k ≤ U . For a fixed user u and server k ≤ U , let u′ be the queue

that has k as the best server, i.e., k∗u′ = k. Now consider the two problem instances (λλλ,µµµ) and (λλλ, µ̂̂µ̂µ),
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where µ̂̂µ̂µ is the same as µµµ except for the two entries corresponding to indices (u, k), (u′, k∗u) replaced
by β. Therefore, for the problem instance (λλλ, µ̂̂µ̂µ), the best servers are swapped for queues u and u′

and remain the same for all the other queues. Let Ptµµµ and Ptµ̂̂µ̂µ be the distributions corresponding
to the arrivals, chosen servers and rates obtained in the first t plays for the two instances under a
fixed α-consistent policy. Recall that Tuk(t) =

∑t
s=1 1{κu(s) = k} ∀u ∈ [U ], k ∈ [K]. Define the

event A = {Tuk(t) > t/2}. By the definition of α-consistency there exists a fixed integer τ and a
fixed constant C such that for all t > τ we have,

Etµµµ

[
t∑

s=1

1{κu(s) = k}

]
≤ Ctα

Etµ̂̂µ̂µ

[
t∑

s=1

1{κu(s) = k′}

]
≤ Ctα , ∀k′ 6= k.

A simple application of Markov’s inequality yields

Ptµµµ(A) ≤ 2C

t1−α

Ptµ̂̂µ̂µ(Ac) ≤ 2C(K − 1)

t1−α
.

We can now use Lemma 18 to conclude that

KL(Ptµµµ||Ptµ̂̂µ̂µ) ≥ (1− α) log t− log(4KC). (29)

It is, therefore, sufficient to show that

KL
(
Ptµµµ||Ptµ̂̂µ̂µ

)
= KL (µuk, β)Etµµµ[Tuk(t)] + KL

(
µu′k∗u , β

)
Etµµµ[Tu′k∗u(t)].

For the sake of brevity we write the scheduling sequence in the first t time-slots {κκκ(1),κκκ(2), ...,κκκ(t)}
as κκκ(t), and similarly we define A(t) as the number of arrivals to the queue and S(t) as the service
offered by the scheduled servers in the first t time-slots. Let Z(t) = (κκκ(t),A(t),S(t)). The KL-
divergence term can now be written as

KL(Ptµµµ||Ptµ̂̂µ̂µ) = KL(Ptµµµ(Z(t))||Ptµ̂̂µ̂µ(Z(t))).

We can apply the chain rule of divergence to conclude that

KL(Ptµµµ(Z(t))||Ptµ̂̂µ̂µ(Z(t))) = KL(Ptµµµ(Z(t−1))||Ptµ̂̂µ̂µ(Z(t−1)))

+ KL(Ptµµµ(κκκ(t) | Z(t−1))||Ptµ̂̂µ̂µ(κκκ(t) | Z(t−1)))

+ Etµµµ
[
1{κu(t) = k}KL (µuk, β) + 1{κu′(t) = k∗u}KL

(
µu′k∗u , β

)]
.

We can apply this iteratively to obtain

KL(Ptµµµ||Ptµ̂̂µ̂µ) =
t∑

s=1

Etµµµ [1{κu(s) = k}KL (µuk, β)]

+
t∑

s=1

Etµµµ
[
1{κu′(s) = k∗u}KL

(
µu′k∗u , β

)]
+

t∑
l=1

KL(Ptµµµ(κκκ(l) | Z(l−1))||Ptµ̂̂µ̂µ(κκκ(l) | Z(l−1))) (30)
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Note that the second summation in (30) is zero, as over a sample path the policy pulls the same
servers irrespective of the parameters. Therefore, we obtain

KL(Ptµµµ||Ptµ̂̂µ̂µ) = KL (µuk, β)Etµµµ[Tuk(t)] + KL
(
µu′k∗u , β

)
Etµµµ[Tu′k∗u(t)],

which can be substituted in (29) to obtain the required result for K ≤ U .

Now, consider the case k > U , where
∑

u∈U 1 {k∗u = k} = 0. We again compare the two problem
instances (λλλ,µµµ) and (λλλ, µ̂̂µ̂µ), where µ̂̂µ̂µ is the same as µµµ except for the entry corresponding to index
(u, k) replaced by β. Therefore, for the problem instance (λλλ, µ̂̂µ̂µ), the best server for user u is server
k while the best servers for all other queues remain the same. We can again use the same technique
as before to obtain

KL(Ptµµµ||Ptµ̂̂µ̂µ) = KL (µuk, β)Etµµµ[Tuk(t)],

which, along with (29), gives the required result for K > U .

As a corollary of the above result, we now derive lower bound on the total expected number
of sub-optimal schedules summed across all queues. In addition, we also show, for each individual
queue, a lower bound for those servers which are sub-optimal for all the queues. As in the proof of
Lemma 19, we assume without loss of generality that the first U indices denote the optimal servers
for the U queues.

Corollary 20. For any problem instance (λλλ,µµµ) and any α-consistent policy, there exist constants
τ and C s.t. for any t > τ ,

(a)

2∆
∑
u∈[U ]

∑
k 6=k∗u

E [Tuk(t)] ≥ U(K − 1)D(µµµ) ((1− α) log t− log(4KC)) ,

(b) for any u ∈ [U ],

2∆
∑
k 6=k∗u

E [Tuk(t)] ≥ (U − 1)D(µµµ) ((1− α) log t− log(4KC)) ,

(c) and for any u ∈ [U ],

∆
∑
k>U

E [Tuk(t)] ≥ (K − U)D(µµµ) ((1− α) log t− log(4KC)) ,

where D(µµµ) is given by (28).

Proof. To prove part (a), we observe that a unique optimal server for each queue in the system
implies that ∑

u∈[U ]

∑
k 6=k∗u

E [Tuk(t)] ≥
∑
u∈[U ]

∑
u′ 6=u

E
[
Tuk∗

u′
(t)
]

=
∑
u∈[U ]

∑
k 6=k∗u

∑
u′ 6=u

1 {k∗u′ = k}E
[
Tu′k∗u(t)

]
.
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Now, from Lemma 19, there exist constants C and τ such that for t > τ ,

2
∑
u∈[U ]

∑
k 6=k∗u

E [Tuk(t)] ≥
∑
u∈[U ]

∑
k 6=k∗u

E [Tuk(t)] +
∑
u′ 6=u

1 {k∗u′ = k}E
[
Tu′k∗u(t)

]
≥ U(K − 1)

KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) .

Using the definition of D(µµµ) in the above inequality gives part (a) of the corollary.
To prove part (b), we can assume without loss of generality that a perfect matching is scheduled

in every time-slot. Using this, and the fact that any server is assigned to at most one queue in
every time-slot, for any u ∈ [U ], we have

Tuk∗u(t) +
∑
k 6=k∗u

Tuk(t) = t ≥ Tuk∗u(t) +
∑
u′ 6=u

Tu′k∗u(t),

which gives us

∑
k 6=k∗u

Tuk(t) ≥ max

∑
u′ 6=u

Tuk∗
u′

(t),
∑
u′ 6=u

Tu′k∗u(t)

 . (31)

From Lemma 19 we have, for any u′ 6= u and for t > τ ,

E
[
Tuk∗

u′
(t)
]

+ E
[
Tu′k∗u(t)

]
≥ 1

KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) ,

which gives∑
u′ 6=u

E
[
Tuk∗

u′
(t)
]

+ E
[
Tu′k∗u(t)

]
≥ U − 1

KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) .

Combining the above with (31), we have for t > τ

∑
k 6=k∗u

E [Tuk(t)] ≥ max

∑
u′ 6=u

E
[
Tuk∗

u′
(t)
]
,
∑
u′ 6=u

E
[
Tu′k∗u(t)

]
≥ U − 1

2KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) .

To prove part (c), we use the fact that 1
{
k∗u′ = k

}
= 0 for any u′ ∈ [U ], K ≥ k > U . Therefore,

for t > τ , we have

∑
k>U

E [Tuk(t)] =
∑
k>U

E [Tuk(t)] +
∑
u′ 6=u

1 {k∗u′ = k}E
[
Tu′k∗u(t)

]
≥ K − U

KL
(
µmin,

µmax+1
2

) ((1− α) log t− log(4KC)) ,

which gives the required result.
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8.2.1 Late Stage: Proof of Theorem 16

The following lemma, which gives a lower bound on the queue-regret in terms of probability of
sub-optimal schedule in a single time-slot, is the key result used in the proof of Theorem 16. The
proof for this lemma is based on the idea that the growth in regret in a single-time slot can be
lower bounded in terms of the probability of sub-optimal schedule in that time-slot.

Lemma 21. For any problem instance characterized by (λλλ,µµµ), and for any scheduling policy, and
user u ∈ [U ],

Ψu(t) ≥ λu
∑
k 6=k∗u

∆ukP [1{κu(t) = k} = 1] .

Proof. For the given queueing system, consider an alternate coupled queueing system such that

1. the two systems start with the same initial condition,

2. the arrival process for both the systems is the same, and

3. the service process for the alternate system is independent of the arrival process and i.i.d.
across time-slots. For each queue in the alternate system, the service offered by different
servers at any time-slot could possibly be dependent on each other but has the same marginal
distribution as that in the original system and is independent of the service offered to other
queues.

We first show that, under any scheduling policy, the regret for the alternate system has the same
distribution as that for the original system. Note that the evolution of the queues is a function of
the process (Z(l))l≥1 := (A(l),κκκ(l),S(l))l≥1 . To prove that this process has the same distribution in
both the systems, we use induction on the size of the finite-dimensional distribution of the process.
In other words, we show that the distribution of the vector (Z(l))tl=1 is the same for the two systems
for all t by induction on t.

Suppose that the hypothesis is true for t − 1. Now consider the conditional distribution of
Z(t) given (Z(l))t−1

l=1 . Given (Z(l))t−1
l=1 , the distribution of (A(t),κκκ(t)) is identical for the two sys-

tems for any scheduling policy since the two systems have the same arrival process. Also, given(
(Z(l))t−1

l=1 ,A(t),κκκ(t)
)
, the distribution of S(t) depends only on the marginal distribution of the

scheduled servers given by κκκ(t) which is again the same for the two systems. Therefore, (Z(l))tl=1

has the same distribution in the two systems. Since the statement is true for t = 1, it is true for
all t.

Thus, to lower bound the queue-regret for any queue u ∈ [U ] in the original system, it is sufficient
to lower bound the corresponding queue-regret of an alternate queueing system constructed as
follows: let {U(t)}t≥1 be i.i.d. random variables distributed uniformly in (0, 1). For the alternate
system, let the service process for queue u and server k be given by Ruk(t) = 1 {U(t) ≤ µuk} . Since
E [Ruk(t)] = µuk, the marginals of the service offered by each of the servers is the same as the
original system. In addition, the initial condition, the arrival process and the service process for
all other queues in the alternate system are identical to those in the original system.

We now lower bound the queue-regret for queue u in the alternate system. Note that, since
µ∗u > µuk ∀k 6= k∗u, we have Ruk∗u(t) ≥ Ruk(t) ∀k 6= k∗u, ∀t. This implies that Q∗u(t) ≤ Qu(t) ∀t.
Now, for any given t, using the fact that Q∗u(t− 1) ≤ Qu(t− 1), it is easy to see that

Qu(t)−Q∗u(t) ≥ 1 {Au(t) = 1}

(
Rk∗u(t)−

K∑
k=1

1{κu(t) = k}Ruk(t)

)
.
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Therefore,

E [Qu(t)−Q∗u(t)] ≥ E

[
1{Au(t) = 1}

(
Rk∗u(t)−

K∑
k=1

1{κu(t) = k}Ruk(t)

)]
= λu

∑
k 6=k∗u

P [1{κu(t) = k} = 1]P [µuk < U(t) ≤ µ∗u]

= λu
∑
k 6=k∗u

∆ukP [1{κu(t) = k} = 1] .

We now use Lemma 21 in conjunction with the lower bound for the expected number of sub-
optimal schedules for an α-consistent policy (Corollary 20) to prove Theorem 16.

Proof of Theorem 16. From Lemma 21 we have,

Ψu(t) ≥ λu
∑
k 6=k∗u

∆ukP [1{κu(t) = k} = 1]

≥ λmin∆
∑
k 6=k∗u

P [1{κu(t) = k} = 1] . (32)

Therefore,

t∑
s=1

∑
u∈[U ]

Ψu(s) ≥ λmin∆
∑
u∈[U ]

∑
k 6=k∗u

E [Tuk(t)] .

We now claim that ∑
u∈[U ]

Ψu(t) ≥ U(K − 1)

8t
λminD(µµµ)(1− α) (33)

for infinitely many t. This follows from part (a) of Corollary 20 and the following fact:

Fact 1. For any bounded sequence {an}, if there exist constants C and n0 such that
∑n

m=1 am ≥
C log n ∀n ≥ n0, then an ≥ C

2n infinitely often.

Similarly, for any u ∈ U , it follows from parts (b) and (c) of Corollary 20 that

Ψu(t) ≥ max {U − 1, 2(K − U)}
8t

λminD(µµµ)(1− α) (34)

for infinitely many t.

8.2.2 Early Stage: Proof of Theorem 17

In order to prove Theorem 17, we first derive, in the following lemma, a lower bound on the
queue-regret in terms of the expected number of sub-optimal schedules.

Lemma 22. For any system with parameters (λλλ,µµµ), any policy, and any user u ∈ [U ], the regret
is lower bounded by

Ψu(t) ≥
∑
k 6=k∗

∆ukE [Tuk(t)]− εut.
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Proof. Since Qu(0) ∼ πλu,µ∗u , we have,

Ψu(t) = E [Qu(t)−Q∗u(t)]

= E [Qu(t)−Qu(0)]

≥ E

[
t∑
l=1

Au(l)− Su(l)

]

= λut−
K∑
k=1

E [Tuk(t)]µuk

= λut−

t− ∑
k 6=k∗u

E [Tuk(t)]

µ ∗u −
∑
k 6=k∗u

E [Tuk(t)]µuk

=
∑
k 6=k∗u

∆ukE [Tuk(t)]− εut.

We now use this lower bound along with the lower bound on the expected number of sub-optimal
schedules for α-consistent policies (Corollary 20).

Proof of Theorem 17. To prove part (a) of the theorem, we use Lemma 22 and part (a) of corol-
lary 20 as follows: For any γ > 1

1−α , there exist constants C4 and τ such that for all t ∈
[max{C4K

γ , τ}, (K − 1)D(µµµ)
4ε̄ ],

1

U

∑
u∈[U ]

Ψu(t) ≥ ∆

U

∑
u∈[U ]

∑
k 6=k∗u

E [Tk(t)]− εut


≥ (K − 1)

D(µµµ)

2
((1− α) log t− log(KC4))− ε̄t

≥ (K − 1)
D(µµµ)

2

log t

log log t
− ε̄t

≥ (K − 1)
D(µµµ)

4

log t

log log t
,

where the last two inequalities follow since t ≥ C4K
γ and t ≤ (K − 1)D(µµµ)

4ε̄ .
Part (b) of the theorem can be similarly shown using parts (b) and (c) of corollary 20.

Additional Discussion: As mentioned in Section 7, we note that (unstructured) Thompson
sampling [20] is an intriguing candidate for future study.

In Figure 3, we benchmark the performance of Q-ThS against unstructured versions of UCB-1,
Thompson Sampling and also a structured version of UCB (Q-UCB) analogous to Q-ThS. Note
that there are two variants of Q-ThS displayed: the first has exploration probability 3K log2 t/t,
as suggested by the theory; the second has a tuned constant, with an exploration probability of
0.4K log2 t/t.

It can be observed that in the early stage the unstructured algorithms perform better which is
an artifact of the extra exploration required by Q-UCB and Q-ThS. In the late stage we observe
that Q-UCB gives marginally better performance than UCB-1, however Thompson sampling has
the best performance in both stages. This opens up additional research questions, discussed in
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Figure 3: Comparison of queue-regret performance of Q-ThS, Q-UCB, UCB-1 amd Thompson Sam-
pling in a 5 server system with εu = 0.15 and ∆ = 0.17. Two variants of Q-ThS are presented, with
different exploration probabilities; note that 3K log2 t/t is the exploration probability suggested by
theoretical analysis (which is necessarily conservative). Tuning the constant significantly improves
performance of Q-ThS relative to Thompson sampling.

Section 7. Q-ThS is dominated as well, but can be made to nearly match Thompson sampling by
tuning the exploration probability (cf. the discussion above).

Nevertheless, it appears that Thompson sampling dominates UCB-1, Q-UCB, and the theoret-
ically analyzed version of Q-ThS, at least over the finite time intervals considered. In some sense
this is not surprising; empirically, similar observations in standard bandit problems [24, 25] are
what have led to a surge of interest in Thompson sampling in the first place. Given these numerical
experiments, it is important to quantify whether theoretical regret bounds can be established for
Thompson sampling (e.g., in the spirit of the analysis in [26, 6, 27]).
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